Quantum Group of Isometries in Classical and Noncommutative Geometry
نویسنده
چکیده
We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative manifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of compact quantum groups acting smoothly and isometrically on a given (possibly noncommutative) manifold. Our formulation accommodates spectral triples which are not of type II. We give explicit description of quantum isometry groups of commutative and noncommutative tori, and in this context, obtain the quantum double torus defined in [8] as the universal quantum group of holomorphic isometries of the noncommutative torus.
منابع مشابه
Stability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کاملNoncommutative Field Theory on Homogeneous Gravitational Waves
We describe an algebraic approach to the time-dependent noncommutative geometry of a six-dimensional Cahen-Wallach pp-wave string background supported by a constant Neveu-Schwarz flux, and develop a general formalism to construct and analyse quantum field theories defined thereon. Various star-products are derived in closed explicit form and the Hopf algebra of twisted isometries of the plane w...
متن کاملCodes as Fractals and Noncommutative Spaces
We consider the CSS algorithm relating self-orthogonal classical linear codes to q-ary quantum stabilizer codes and we show that to such a pair of a classical and a quantum code one can associate geometric spaces constructed using methods from noncommutative geometry, arising from rational noncommutative tori and finite abelian group actions on Cuntz algebras and fractals associated to the clas...
متن کاملQuantum Isometries and Noncommutative Spheres
We introduce and study two new examples of noncommutative spheres: the half-liberated sphere, and the free sphere. Together with the usual sphere, these two spheres have the property that the corresponding quantum isometry group is “easy”, in the representation theory sense. We present as well some general comments on the axiomatization problem, and on the “untwisted” and “non-easy” case.
متن کاملIntersecting Connes Noncommutative Geometry with Quantum Gravity
An intersection of Noncommutative Geometry and Loop Quantum Gravity is proposed. Alain Connes’ Noncommutative Geometry provides a framework in which the Standard Model of particle physics coupled to general relativity is formulated as a unified, gravitational theory. However, to this day no quantization procedure compatible with this framework is known. In this paper we consider the noncommutat...
متن کامل